COMPARATIVE STUDY OF DIPROPYLAMINE-DIRECTED SYNTHESIS OF SAPO MOLECULAR SIEVES

R. SZOSTAK, T.L. THOMAS and D.C. SHIEH

Zeolite Research Program, Georgia Tech. Research Institute, Georgia Institute of Technology, Atlanta, Ga 30332, U.S.A.

Received 1 November 1988; accepted 30 November 1988

The crystallization of the silicoaluminophosphate MCM-9 occurs successfully under a very narrow range of composition and exhibits a strong sensitivity to the amount of dipropylamine used as a crystal directing agent in this system. The presence of a structural mixture in this system is confirmed through comparison of X-ray diffraction patterns with those of VPI-5 and SAPO-11.

1. Introduction

The introduction of silicon into the structural aluminophosphate framework offers the opportunity to inject potential acid functionality into the neutral AlPO₄ framework. Initial reports of successful incorporation by Lok et al. in 1984 of quantities of silicon [1,2] into the framework through direct addition of silicon containing compounds to the aluminophosphate gel were followed by other reports of a modified synthesis procedure by Derouane and von Ballmoos [3,4]. A two phase system, hexanol + water, was observed to act as a vehicle to introduce silicon into the structure. In both cases the introduction of silicon as a component of the starting material was observed to result in the crystallization of new microporous zeolite-like phases.

2. Crystallization studies of MCM-9 and SAPO-11

We have observed in the course of our studies of the synthesis of the recently reported silicoaluminophosphate molecular sieve, MCM-9 [4], that the formation of the material, as identified from the reported X-ray powder diffraction pattern [4], exhibited a strong sensitivity to the concentration of the organic additive used to direct crystallization of this structure. From a component variable study of this two phase crystallization system (see table 1), using dipropylamine as the crystal directing agent, it was observed that the production of the desired MCM-9

Table 1			
Parameter study in the	Si:Al:P system with	dipropylamine (DPA) as a template.

$\overline{P_2O_5}$	SiO ₂	H ⁺	H ₂ O	C ₆ H ₁₁ OH	DPA	Phase produced
$\overline{\text{Al}_2\text{O}_3}$	$\overline{\text{Al}_2\text{O}_3}$	$\overline{\text{Al}_2\text{O}_3}$	$\overline{\text{Al}_2\text{O}_3}$	$\overline{\text{Al}_2\text{O}_3}$	$\overline{\text{Al}_2\text{O}_3}$	
1	0.36	10.44	20.7	3.7	0	dense phase
1	0.36	3.25	20.7	3.7	0	dense phase
1	0.36	-3.95	20.7	3.7	0	dense phase
1	0.36	-11.14	20.7	3.7	0	dense phase
1	0.36	-17.17	20.7	3.7	0	dense phase
1	0.36	10.14	20.7	3.7	0.74	MCM-9
1	0.36	3.25	20.7	3.7	0.74	amorphous
1	0.36	-3.95	20.7	3.7	0.74	dense phase
1	0.36	-11.14	20.7	3.7	0.74	unknown #
1	0.36	-17.17	20.7	3.7	0.74	unknown #
1	0.36	10.14	20.7	3.7	1.48	SAPO-11
1	0.36	3.25	20.7	3.7	1.48	amorphous
1	0.36	-3.95	20.7	3.7	1.48	unknown #
1	0.36	-11.14	20.7	3.7	1.48	unknown #
1	0.36	-17.17	20.7	3.7	1.48	dense phase
*1	0.36	10.14	20.7	3.7	1.48	amorphous
*1	0.36	3.25	20.7	3.7	1.48	amorphous
*1	0.36	-3.95	20.7	3.7	1.48	amorphous
*1	0.36	-11.14	20.7	3.7	1.48	dense phase
*1	0.36	-17.17	20.7	3.7	1.48	dense phase
1	0	3.0	20.7	0	0.74	AlPO ₄ -11
1	0	0.95	20.7	0	0.74	layer + dense #
1	0	0.03	20.7	0	0.74	layer phase
1	0	-3.53	20.7	0	0.74	amorphous
1	0	-11.41	20.7	0	0.74	amorphous
1	0	-19.39	20.7	0	0.74	amorphous

^{*} Aged at room temperature for 24 hours.

Al source: Catapal P source: H₃PO₄ Si source: Si(OC₂H₅)₄ Temperature: 200 ° C

Time: 3 days

structure was sensitive to the concentration of the organic amine in the starting mixture. In a system devoid of the dipropylamine, only dense phase material is observed to form. Upon addition of the amine at a ratio of 0.74 relative to the alumina present, the desired MCM-9 is formed. Doubling of the organic additive results in the loss of many peaks in the X-ray diffraction pattern observed for the MCM-9 material. The remaining very intense peaks can, however, be successfully matched to the SAPO-11 X-ray pattern, which is also known to crystallize in the presence of the dipropylamine [2]. Without the presence of the silicon containing

[#] attributed to the aluminophosphate H3 [7].

second phase, the related AlPO₄-11 structure, as identified from its X-ray powder diffraction pattern, is formed. The diffraction peaks observed in the X-ray pattern of MCM-9, which disappeared when the dipropylamine concentration was doubled, can be identified as another aluminophosphate phase, the silicon

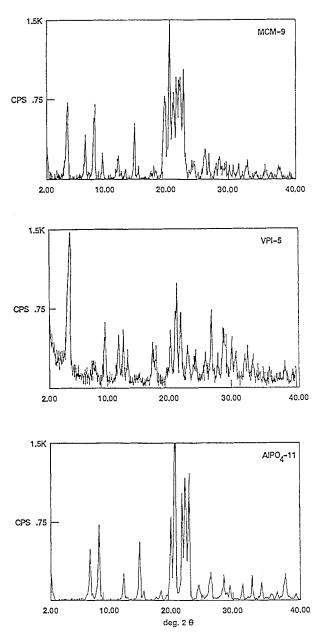


Fig. 1. X-ray powder diffraction patterns of MCM-9 (top); VPI-5 (middle) and AlPO₄-11 (bottom) showing the similarities in the X-ray peak positions.

Table 2 Comparison of the X-ray powder diffraction patterns of VPI-5, MCM-9 and SAPO-11 [1,4,6].

VPI-5		MCM-9	MCM-9		SAPO-11	
$\overline{d(A)}$	I/I_0	$\overline{d(\mathbf{A})}$	I/I_0	$\overline{d(A)}$	$\overline{I/I_0}$	
16.43	100	16.41	vs			
		10.84	w	10.98	20	
9.49	2	9.33	w	9.41	36	
8.23	14	8.20	m			
		6.68	w	6.76	13	
6.21	6	6.17	w			
		5.65	w	5.66	23	
5.48	2	5.46	w	5.44	3	
4.75	6	4.74	w			
				4.68	5	
		4.34	w	4.35	36	
		4.21	S	4.23	100	
4.08	20	4.10	m		y	
4.05	22	4.05	m			
3.97	14	4.00	w	4.02	54	
3.94	15	3.94	m	3.95	56br	
		3.83	m	3.84	66	
3.77	10	3.77	w			
3.64	4	3.64	w			
2.0.	•	3.59	w	3.60	8br	
3.41	2	3.39	w	3.38	19	
3.28	16	3.28	m	3.28	1	
3.17	5	3.16	w	3.12	14	
3.08	7	3.09	w	3.08	3	
3.03	4	3.03	w	3.03	6	
2.95	8	2.95	w			
2.90	5	2.90	w			
2.70				2.84	8	
2.74	7	2.74	w	2.73	13	
2.63	2	2.63	w	2.63	8	
2.50	3			2.51	3	
2.35	3			2.47	3	
2.55	2			2.38	10br	
				2.292	3	
				2.238	2	
				2.113	6	
				2.019	4	
				1.941	1	
				1.870	2	
				1.807	3	
				1.684	4	

br = broad peak.

containing analog of VPI-5. This was verified through isolation of pure crystalline VPI-5 under milder crystallization temperatures following the reported details of the synthesis of this structure [5].

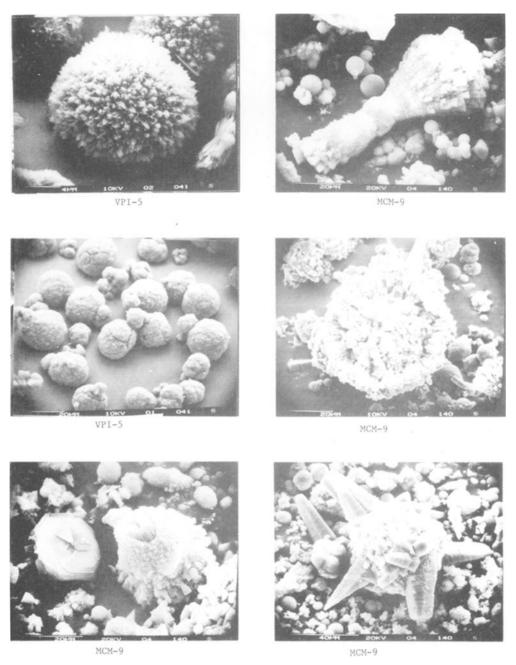


Fig. 2. SEM images of MCM-9 crystals and VPI-5 crystals.

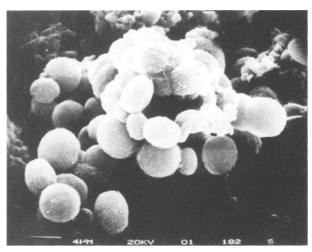


Fig. 3. SEM image of SAPO-11 crystals prepared in the two phase system.

3. Characterization of the products and comparison with VPI-5

A comparison of the X-ray powder diffraction patterns for MCM-9, VPI-5 and AlPO₄-11 (comparable to SAPO-11) are shown in fig. 1 and the X-ray peak positions for the three materials are provided in table 2, showing the identification of all of the reported peaks in the MCM-9 X-ray diffraction pattern. The SEM images of MCM-9 and VPI-5 are shown in fig. 2. The images of SAPO-11 as prepared from the two phase system are provided in fig. 3. In addition to the X-ray diffraction pattern comparisons, the presence of numerous crystal habits in the MCM-9 sample also is suggestive of the presence of multiple phases.

4. Experimental procedure

The methodology used in the preparation of MCM-9 was taken from the patent examples 1 and 2 from ref. [4]. The compositions used in the variable study and the resulting crystalline products formed are presented in table 1. The synthesis procedure for VPI-5 was followed exactly as reported in ref. [5]. A Rigaku D/Max-11B Microprocessor Controlled Automated X-ray Powder Diffraction System was used to generate the powder patterns of the samples presented in this study. SEM micrographs were taken on a Cambridge 150 Spectroscan.

Acknowledgements

Appreciation is noted for Mr. John Sparrow of the Materials Characterization Branch at Georgia Tech for the SEM micrographs.

References

- B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, US Pat. 4, 440, 871 (1984).
- [2] B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, J. Amer. Chem. Soc. 106 (1984) 6092.
- [3] E.G. Derouane, R. von Ballmoos, U.S. Pat. 4, 647, 442; U.S. Pat. 4, 639, 357; U.S. Pat. 4, 623, 527; U.S. Pat. 4, 539, 358; Eur. Pat. Appl. 0146386; Eur. Pat. Appl. 0146, 385; Eur. Pat. Appl. 0146387.
- [4] E.G. Derouane, R. von Ballmoos, Eur. Pat. Appl. 0146389.
- [5] M.E. Davis, C. Montes and J. Garces, in "Symposium on Advances in Zeolite Synthesis", American Chemical Society Meeting, Los Angeles, Sept. 1988.
- [6] M.E. Davis, C. Sadarriaga, C. Montes, J. Garces, C. Crowder, Zeolites 8 (1988) 362.
- [7] F. d'Yvoire, Bull. Soc. Chem. (France) (1961), 1762.